
The importance of missing a defect is (C1=)i = (Almd)i. The optimal layer thickness cor- 
responds to minimum average risk SL § Rmi n. The results of determining SLop t for one of the 
samples of organic plastic are presented in Fig. 4. The studies showed that the optimal 
thickness of the scanning layer in studying moisture transfer in composite materials SL = 
8-10 -3 m. The placement error, which for SL = 8-10 -3 m is minimum, has the greatest effect 

on the result here. 

Thus in studying moisture transfer processes in composite materials by the tomographic 
method some noise level must be taken into account, and the choice of the data processing 
regime and the thickness of the scanning layer must be approached in a well-founded manner. 

NOTATION 

~(f), distribution of the random variable f; e, base of the natural logarithm; ~, shape 
parameter; 0, scale parameter; C = 0.5772, Euler's constant; C21, value of a false alarm; 
C~=, importance of missing a defect; P(H21), P(H12), probability of a false alarm and the 
probability of missing a defect; A, instrumental error; x2 - xl, range of uncertainty prior 
to the measurements; (AY)i, increment to the entropy interval owing to the placement error. 
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MODELING OF RESERVOIRS IN A BAZHENITE SUITE 

Yu. A. Buevich and V. A. Ustinov UDC 553.98:532.546.7 

The characteristic features of a structural model of bazhenites, regarded as a col- 
lection of horizontal layers, which are formed by a system of overlapping, permeable, 
lenslike cavities in an impermeable medium, are discussed. 

i. Commercial pools of petroleum in the sedimentary deposits of a bazhenite suite are 
the most promising formations for increasing the reserves of petroleum in the West-Siberian 
region. The problem of estimating these reserves and developing corresponding computational 
methods is therefore of great interest. Since bazhenites have a number of unusual proper- 
ties that distinguish them significantly fromother well-known reservoirs, to solve this 
problem it is first necessary to construct an adequate structural model of bazhenites and 
the character of the petroleum distribution in them. 

Based on modern ideas [i] petroleum-bearing regions in bazhenites are concentrated in 
permeable, lens-like cavities, oriented parallel to the stratification and occurring in 
dense, impermeable rocks. In addition, significant, large-scale nonuniformity occurs in 
both the horizontal and vertical directions. Vertical sections of separate wells reveal 
permeable intercalations differing in thickness and filtrational characteristics. The 
sizes and properties of the cavities (lenses) in the same horizontal layer can also vary 
over a wide ~ange. 

These structural features of a reservoir in a bazhenite suite lead to the fact that its 
global characteristics as a fluid-conducting medium are very unusual. This makes many 
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traditional geophysical and especially hydrodynamic methods for calculating petroleum re- 
serves inapplicable. Different hydrodynamic models of bazhenites proposed previously are 
reviewed and discussed in [2], where it is concluded that the so-called quasiclosed elasto- 
plasticmodel, in which limited hydrauliccoupling betweenpetroleum-bearing cavities is 
allowed, is most promising for describing the hydraulic phenomena observed in bazhenites. 
The majority of the most important features of the process of petroleum extraction from 
bazhenites can indeed all be explained already on the basis of the simplest variant of such 
a model [3]. There is, however, a fundamental property that is not explained by this for- 
malized model: the hydraulic coupling of the wells in different cases is by no means the 
same and is often very weak, and pairs of close-lying wells that are definitely not coupled 
with one another do occur [i, 21]. This indicates that the permeability of the rocks in the 
matrix separating the petroleum-bearingcavities is very low or generally nonexistent, 
while the hydraulic coupling occurs primarily as a result of partial overlapping of the 
cavities or along thin intercalations connecting them. 

Permeable petroleum-bearing cavities of a bazhenite reservoir also exhibit a complicated 
multilevel structure, which, on the one hand, determines the effective mechanical and 
thermophysical properties of the material of the cavities (an example of the modeling of 
these properties oan be found in i[4]) and, on the other, gives rise to deformational pro- 
cesses, which alter the permeability at the bottoms of the wells. This latter property 
affects the form of the indicator diagrams and the pressure ~econstruction curves and on 
the whole makes it much more difficult to interpret the results of hydraulic tests and to 
test models at the top hierachical level, i.e., on scales of the order of the size of the 
cavities. Real deformational processes at the well bottom apparently include the stages 
of elastic and plastic deformation as well as dilatant fracture and can substantially affect 
the observed dependences of the output of a well on the bottom-hole pressure, the instant- 
aneous formation pressure, the total yield of petroleum, etc. [5]. This effect was previous- 
ly studied for a model of a fissured porous material with flat cracks [6]. 

The situation can also be complicated by pseudoplasticity, which leads to the appear- 
ance of a limiting gradient in a uniformmedium or, in the presence of exchange between 
porous blocks and cracks, in a medium with two values of the porosity. 

Any attempt to introduce into the model of a bazhenite reservoir the full diversity 
of struntural and other factors, manifested in different scale levels, without complete 
information is at the present time premature. It is first necessary to construct at least 
a rough but informative model of a reservoir, taking into account only the large-scale 
nonuniformity, that could serve as a strong foundation for further analysis as well as to 
formulate the chief problems in modeling and to indicate the fundamental paths for solving 
them. Taking this as the goal of this work, inwhat follows we shall ignore the detailed 
structure of the material of the cavities as well as the possible change in the properties 
of the material with time. 

2. Based on existing data a bazhenite reservoir can be regarded as a collection of 
a small number of horizontal layers, which to a first approximation can be regarded as 
statistically independent and identical. Then one must first study the hypothetical struc- 
ture of only one such layer, whose local macroscopic properties are random functions of the 
coordinates. 

The determination of the statistical structural characteristics and the effective per- 
meability of each horizon can in principle be Studied on the basis of a continuum theory of 
percolation [7], but the existing factual data are inadequate even for a reliable formula- 
tion of the corresponding mathematical problems. We shall thus regard a horizon as a SYstem 
of cavities in an impermeable surrounding medium. The arrangement of the geometric centers 
(centers of gravity) of neighboring cavities of different size and shape must obey a definite 
correlation law, determined by the geological characteristics of the process of formation of 
bazhenites. Since virtually nothin~ is known about such correlations, here as a working 
hypothesis we shall completely neglect theirpossible existence, making the assumption that 
the arrangement of the indicated centers is completely independent and arbitrary (and, cor- 
respondingly, the cavities freely overlap). Then the distribution of the centers obeys 
Poisson's law, according to which the probability that N centers occur in an arbitrarily 
chosen section with area s is given by 
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TABLE i. Dependence of the Relative Fraction of the Produc- 
tive Area of Separate Horizons on the Number of Horizons 
and the Total Relative Fraction of Unproductive Wells 

1 - -q~.  
i 

0,I 0 0,15 0,20 0,25 0,30 0,35 0,40 0,45 

0,900 
0,684 
0,536 
0,438 

0,850 
0,613 
0,469 
0,378 

0,800 
0,553 
0,415 
0,331 

O, 750 
O, 500 
0,370 
0,293 

O, 700 
0,452 
0,331 
0,260 

0,650 
0,408 
0,295 
0,231 

O, 600 
O, 368 
0,263 
0,205 

O, 550 
O, 329 
O, 234 
0,181 

Fig. I. Structure of the horizon formed by circular lenses 
with a random uniform distribution of the centers for �9 = 
0.3 (a) and 0.6 (b); the radii of the lenses obey the distri- 
bution (6) with the average value Ro = 0.13L, where L is the 
side of the squares; the permeable region is cross-hatched. 

W g(s )= 1 (ns)Nexp(_ns). 
N! 

(1) 

Since the probability that one center is present in a small area ds equals nds, it is not 
difficult to obtain from (i) the probability distribution for the presence of a center of 
the (j + l)-st cavity at a distance r from an arbitrarily chosen point r = 0 in the plane. 
It equals 

PJ+I (r) = 2n----n-n (arZn) i exp (-- ar2n) r. 
it (2) 

From here we determine the average distance between the centers of the nearest cavities 
and the standard deviation of the true distance from the average distance (variance of the 
distribution): 

i 1 <r)-- rPl(r) d r = 2 v . n  ' 
0 

" 2 ] / n  P1 (r) dr --- 4 a n  

(3) 

The probability that some arbitrarily chosen point lies outside all f(s)ds cavities with 
areas in the interval (s, s + ds) equals, according to (i), exp(-ns). Using the theorem for 
multiplication of probabilities, we obtain the following formula for the probability of the 
event s this point lies in the matrix, i.e., not in any of the cavities whose areas are 
distributed with density f(s), 

1- -  q~ = exp (-- n S sf (s) ds) , (4) 
0 
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F i g .  2 .  R e d u c e d  d i s t r i b u t i o n s  o f  t h e  n e a r e s t  n e i g h b o r s  
F j  + x = (2 ~ n ) -  P j + ~  a s  a f u n c t i o n  . o f  t h e  d i m e n s i o n a l  
distance p = ~r the numbers on the curves are the 
values of j + i. 

which automatically takes into account the possibility that the cavities overlap and is a 

simple generalization of the formula following from the Mampel's theory of the formation and 
growth of circular nuclei of a new phase on a flat surface [8]. Obviously, ~ is the re- 
lative fraction of the area of a given horizon occupied by permeable cavities. If there are 
i horizons, then because they are assumed to be identical and independent we obtain the 

following formula for the probability that a well intersects all horizons without hitting a 
cavity in any of them 

0 

The quantity 1 -- ~ can in principle be determined from blocks of data over many wells 
as the relative fraction of nonproductive wells, and if the number of horizons is known, it 
is easy to find from here the quantity ~, characterizing each of them. The values of ~, cor- 
responding to different values of i - ff~ and i, are given in Table i; this quantity is, of 
course, of primary importance for evaluating petroleum reserves. 

To further describe the topological characteristics of the horizons under study it is 
necessary to specify the distribution of cavities over the parameters characterizing their 
shape, orientation in the plane, and size. There is virtually no information about such 
distributions, so that we shall simply model the cavity by circular lenses, either having the 
same radius Re or radii distributed with density 

:t R e x p (  ~Rz ) 
[ ( R ) - ~  2R~ 4Ro2 , , R o - - = < R >  (6)  

(this function corresponds to a Gaussian distribution of the lengths of segments connecting 
some point in the permeable region with the closest boundaries of the lens and laid along 
two perpendicular axes intersecting at this point). 

From (4) and (5) we obtain simply for lenses of the same size 

1 --~, = (1 -- ~)i = exp (-- ~R~ni), 

while for lenses distributed according to the law (6) we have 

1 - -  q~, = ( 1 - -  ~)i - -  exp ( - -  4R2oni). 

The topology of a horizon with lenses with the size distribution (6) is illustrated in 
Fig. 1 for two values of the relative fraction of the lenses ~. The structures shown are a 
separate realization of the pattern of disks thrown randomly on a rectangular area with 
the radius of each disk chosen randomly in accordance with (6). 

Using (2) we obtain a formula for the probability of the event that some lens with 
radius R does not overlap any lens with radius RI: 

1366 



PIr>n+R, = i P1 (r) dr - e x p  [-- a(R q- R1)2nl. (7) 
R+R* 

The probability that the indicated lens does not overlap any of the other lenses obey- 
ing the distribution (6) 

Qt (R) = i" PIr>Rq-R.[ (R~) dR~ -- 
0 

4R~ 
X 

(8) 

,( I____ I- '" >< [ I - -  |./a ? exp (%,z) erfc (?)1 exp ( - -  nRZn), ? -- ]/-a Rn n + 4R~ ] ' 

d e t e r m i n e s  t h e  p r o b a b i l i t y  o f  e n c o u n t e r i n g  i n  e a c h  h o r i z o n  c l u s t e r s  c o n s i s t i n g  o f  o n l y  one  
lens with a given radius. The overall relative fraction of isolated lenses can be obtained 
by averaging (8) with the help of (6). 

For a system of identical lenses we obtain from (7) instead of (8) 

Q1 = exp (-- 4~R~). (9) 

The probability that the distance between the closest centers of lenses with radii R 
and RI exceeds IR - R~] is given by 

P[r>IR-~,I = exp [-- a (R - -  R1)2 n]. (10) 

S u b t r a c t i n g  t h i s  q u a n t i t y  f rom u n i t y  and i n t e g r a t i n g  t h e  r e s u l t  u s i n g  t h e  w e i g h t  (6) 
w i t h  R = R1 i n  t h e  i n t e r v a l  (R, ~) g i v e s  t h e  r e l a t i v e  f r a c t i o n  o f  "phan tom l e n s e s "  w i t h  
r a d i u s  R, c o n t a i n e d  w h o l l y  w i t h i n  l e n s e s  w i t h  a l a r g e r  r a d i u s .  One such  phantom l e n s  i s  
shown i n  F i g .  1.  

Finally the formula (2) determines the probability that the centers of the first, 
second, etc. neighboring lenses located closest to some point lie at a certain distance 
from this point. These probabilities are useful for choosing locations for new wells in the 
vicinity of unproductive wells. They all have maxima for definite values of r; for example, 
the maximum of the probability distribution of a lens-center closest to the point is reached 
for r = i/2v~Tn, which is somewhat less than the average distance between neighboring centers 
from (3). Because of their practical importance the functions Pj+~ (r) for small j are shown 
in Fig. 2. 

The relative fraction of lenses with a given radius appearing among clusters of only 
two lenses, the average concentration of such clusters, as well as their average area can be 
determined in an analogous manner. The calculations can also in principle be extended to 
clusters consisting of a largenumber of lenses, but the purely computational difficulties 
grow very rapidly as the number of lenses in the clusters increases. If Qm is the probability 
of finding a lens in a cluster of m coupled lenses (with m = 1 this probability is obtained 
by averaging (8) over the distribution (6), while for a system of identical lenses it is 
determined by (9)) and Sm:iS the average area of such an m-cluster, then the average number 
of m-clusters per unit area equals (n/m)Qm, while the area occupied by them is (n/m)Qms m. 
Obviously 

n . - -  Q,, ,s , .  = q), ( l l )  
m 

where ~ is defined in (4). Correspondingly the quantities (n/~m)Qms m determine the proba~ 
bility that a productive well occurs precisely in an m-cluster of tile horizon under study, 
while s m is the average area that is in principle drained by such a well in the case that 
the gaps between the lenses are impermeable. In this case two productive wells are hy- 
draulically coupled with one another if they belong tothe same cluster, and they are com- 
pletely uncoupled if belong to different clusters. If the matrix has a finite though low 
permeability, then weak hydraulic coupling is also possible between wells draining different 
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Fig. 3. Dependence of the pressure at the well bottom 
(relative units) on the dimensionless time t for different 
values of e(a) and the mean distribution of the pressure 
inside (r < i) and outside the lens for different values 
of t (b) for a well with the dimensionless radius 0.01 in 
a regime with a constant output. 

clusters. Aside from ~the average values of Qm and Sm, for small m it is also possible to 
find, with the help of direct methods analogous to those employed above, the characteristics 
of the corresponding distributions. 

3. If ~ is much lower than the percolation threshold, corresponding to the formation 
of an infinite cluster consisting of an infinite number of lenses (and equal to 0.5 in the 
case under study [9]), then in the sum (II) only the first several terms, corresponding to 
clusters consisting of a small number of lenses, are important; in this case the required 
calculations can be performed directly, as indicated above. 

The situation is completely different near the percolation threshold, when clusters 
consisting of a large number of overlapping lense become important; in this case much de- 
pends on whether or not the real relative fraction of the productive surface of the horizon 
exceeds the value 0.5, corresponding to the percolation threshold [7, 9, i0]. Unfortunately 
at the present time there are no complete data that would permit answering this question 
equivocally. If the relative fraction of unproductive wells ~quals 10-30%, then as follows 
frora Table i, depending on tlle number of independent horizons, both situations can occur. 
In any case, however, there is no doubt that the actual values of ~ are quite close to the 
percolation threshold, i.e., large clusters must be taken into account together with small 
clusters. The determination of the probabilistic characteristics of clusters, describing 
the topological structure of the system of lenses, is in this case a very difficult problem, 
which is best solved by the methods of scaling theory [I0]. 

Here we shall study only some very simple estimates for large clusters, which can be 
obtained by analogy to the statistical theory of polymer molecules With free rotation [ii, 
12]. Let a cluster consist of m + 1 overlapping lenses. Consider a broken line whose seg- 
ments connect successively the centers of the nearest lenses; this line is a two-dimensional 
analog of a polymer chain. Unlike the polymer chain, huwever, the length of separate seg- 
ments is different and cannot be regarded as a determinate quantity -- its distribution can 
be determined from the formulas (2) and (6). This substantially complicates the statistics 
of such broken lines. For this reason, as a simplification, here we shall neglect both 
facts, making the assumption that the length of all segments simply equals the quantity <r> 
from (3); the analogy to two-dimensional polymer chains is then complete. 

The length of the projection of each segment on some axis x in the plane I x = /cos0, 
where 0 is the angle between the segment and the axis; 1 = r = i/2/n; and 

1 2n 12 2~t /2 
> odo o, > c w  odo - 

2 
- --.. (12) 

The number of steps in the positive and negative directions obeys, as is well known, the 
Bernoulli distribution. If the number of segments is large compared with the difference of 
the steps in the positive and negative directions, then we obtain a Gaussian distribution 
for the probability density of the random length X of the straight line connecting the centers 
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of the first and last lenses of the cluster (i.e., the vector sum of all segments) [Ii, 12] 

w(X; m ) =  \ ~ m l Z  I exp . . . .  ml z (13) 

(here the relations (12) were employed). Because the horizon under study is on the average 
isotropic the mutually orthogonal directions x and y in it are completely equivalent. From 
here follows an expression for the probability density of the length L of the indicated 

straight line: 

( L2) w(L; m) 2 exp - - - - -  L. (14) 
ml z ml 2 

It follows from (13) and (i4), in particular, that <X> = 0, <Xa> = m~2/2 and <L> = 
~/~ml/2, <La> = ml 2. 

Now let the x axis be oriented along the vector sum of the segments, and let x = 0 cor- 
respond to the center of the right-hand lens. The distribution of the coordinates of the 
centers of the (k + l)-st lens in the Gaussian approximation is given by : 

wk (xk, Yh; L, m) ---- ~k (m -- k) I z exp k (m -- k) I z xh -- -~ q ~ (15) 

whence it follows that <Xk> = kL/m, <yk > = 0 and, further, 

<'xk/ r , L 2 +  - --, < y ~ > - - - -  
\ m /  m 2 m 2 

The maximum value of <rk> = <x~ + y~> is achieved for 

12m 2 
k = k , ~ =  , l, 2 < 2 L  z. 

2 (12m z - -  L z) 

< 2 
The value of rk> , obtained for k = km, is the mean-square maximum "radius" of a 

cluster, containing the (m + 1)-st lens and characterized by the quantity L. Averaging 
additionally <r~> with the help of (14) gives 

of - -  .! < > w (L; m) dL = kZ2, 
0 

and it is completely natural to regard Pm = /mml as the average "radius" of a cluster. Then 
the probability for the existence of such a cluster (for the fact that it does not intersect 
any additional lens of radius R along its outer boundary) can be evaluated as the probability 
that no center of a lens fails within a ring with area ~R(2Pm + R), i.e., based On (i) we 
have 

Qm (R) ~ exp [-- ~R (2pro + R) n] ~ exp (--  2~Rpmn). (16) 

This formula can serve as a rough estimate of the probability of the appearance of 
large clusters. 

All results presented above were obtained in the Gaussian approximation, for the valid- 
ity of which the inequalities m >> 1 and L << ms must be satisfied. If the second inequality 
does not hold, then the calculations become significantly more complicated, which now in 
particular lead not to (13)-(15), but rather to morecomplicated distributions, which depend 
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on Langevin function and are analogous, with respect to their meaning, to the distributions 
in the Kuhn and GrUn theory of linear polymers [ii]. If the first inequality does not hold, 
then the analysis becomes even more difficult. In this case a two-dimensional analog of 
TrelOar's theory of polymer chains [ll] can be constructed; some calculations for small m 
are also presented in [13]. 

Using these results it is in principle also possible to determine other geometric pro- 
perties of the broken lines connecting the centers of lenses belonging to clusters of differ- 
ent sizes. However in order to take into account the probabilistic character of the lengths 
of the segments of these broken lines and the radii of the lenses themselves and to deter- 
mine the associated relative fraction of the productive area within clusters and the pro- 
bability of hydraulic coupling of the wells and in order to solve other problems of an ana- 
logous character the theory of two-dimensional polymer Chains must be significantly extended, 
which is a very difficult problem. The question of the usefulness of such a generalization 
should obviously be resolved after the proposed model is carefully compared with the actual 
data and possibly after some new data on the structure of bazhenites are obtained. 

In principle an entirely different approach to the modeling of bazhenite reservoirs, 
using the methods of percolation theory, that is completely unre• with the introduction 
of cavities with definite sizes and shapes is also possible. For example, a separate hori- 
zon of a collector can be represented as an array, for which there is a definite probability 
to find some volume of petroleum at the nodes of the array; in addition, the nodes are con- 
nected by means of ties which can be functional or not with a fixed probability. In limiting 
cases the proposed mixed array problem reduces to classical problems of nodes or ties in the 
theory of percolation [7, i0]. 

$. ~If the number of horizons can be determined with the help of independent methods, 
then nRo 2 can be determined based on the known percentage of unproductive wells from the for- 
mulas of the type (5). It is also of interest to obtain information about the distribution 
of lenses over sizes and properties, for which it is natural to use the results of hydraulic 
tests of wells. 

The random character of the parameters characterizing different experimental curves for 
separate wells represents the total result of the simultaneous action of diverse random 
factors. They include, first of all, the random permeability and thickness of the Cavities 
in the region of the well bottom, the total number of horizons drained, the shape and size 
of the clusters formed by the cavities, and the position of the well bottom relative to the 
boundaries of the clusters. By postulatin~ some correlation couplings between some of these 
factors and assuming that the statistical properties of the distributions are known for each 
of them it is in principle possible to determine a distribution of the type presented in 
[14]. To do so it is also necessary to solve the problem of the flow into the wells, re- 
generation Of the pressure in their vicinity, etc. in regions with a complex geometry. Ob- 
viously the problems arising here are very complicated. They are even more complicated due 
to the lack of complete information about each of the indicated factors, since in order to 
separate their contributions it is now necessary to solve inverse, rather than direct, pro- 
biems. For this reason it is best to start from some simplified ideas regirding the struc- 
ture of the horizons of the type employed in [3]. 

To this end we shall assume that the thickness of all cavities is the same, but that 
the cavities are distributed according to their permeability, and we shall study a well 
whose bottom lies at the center of a circular lens, placed in a fictitious filtering medium, 
whose permeability is identical to the effective permeability of the horiion as a whole; we 
shall assume that the random permeability of the lens material is uniform. On the basis of 
this simple model, in a certain sense generalizing the model of [3], the spread in the ex- 
perimental curves of the regeneration and drop of the pressure is associated with the random 
character of the radius and permeability of the lenses. 

The effective permeability ~ of a medium consisting of freely overlapping circular 
lenses with arbitrarily distributed radii but identical permeability K I in a matrix with a 
low permeability no can be calculated based on the formula [15] 

• 1 - -  2q~ 1 - -  •  JF- 1,---  2 ~ )  z 1 - -  '~1 2 + 4 • 1/2 
~o • Xo ' •  (17) 
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In the case ~i >> <o we obtain from (17) the approximate formulas 

• , ~  ( 1 -- 2r -~ • r < 0 , 5 ;  

• ~ (1 - -  2q~) xl, rp > 0,5, 
(18) 

from which, in particular, follows the value ~ = 0.5 as the threshold of percolation (for 
<o = 0 the horizon as a whole has a nonzero permeability only in the case ~ > 0.5). If the 
permeability of the matrix and the lenses are random quantities, then the linearity of the 
relations (18) permits employing them in this case also with Ko and KI replaced by the cor- 

responding average values. Thus in what follows we assume that < is known. On the basis 
of this model the random character of the effect of the surrounding medium on the well is 
taken into account only through the distribution of the radii of the corresponding lenses. 

As an example we shall study here only the problem of starting up a well with a con- 
stant output. We shall introduce the dimensionless time t and radial coordinate r so that 
the radius and coefficient of piezoelectric conductivity of the lens would equal unity, and 
we shall determine the dimensionless pressures inside Pl and outside P0 the lens so that in 
the limit r + 0 the quantity r(~pl/gr) equals unity. Then we have the problem 

@o/Ot = ~@o, r >/1; Opl/Ot = Apl , 0 ~ r <  1; 

@1 Opo Opl 
] i m r  - - 1 ;  P o = P ~ ,  e - - - -  - -  , r =  I; P i = O ,  t----O. 
r ~ o Or Or Or 

(19) 

Here ~ is the dimensionless effective piezoelectric conductivity of the medium sur- 
rounding the lens, which is formally determined from (18) as ~ = K for <I = i. The solution 
of this problem by the Laplace transform method as well as the asymptotic behavior at short 
and long times were examined in [16]. Here, to obtain an easily understood result, we shall 
confine our attention to an approximate solution, following from the zeroth approximation~: 
of the method of integral relations [16]. After the calculations we obtain 

o, r>~2 Ff  t <  I 

p,  (t, r) = / l n  (r/2 IRK), r < 2 )#Y I 4 

[ b  r - -  e-11n l / 1 - ~ - - ~ ,  �9 = t - -  1 / 4 > 0 ;  

0, t ~< 1/4, 

O, f ~ V']--+- 4e~ 
po(t, r)=ie-, ln(r/)/[~-$s~), r < f ~  ~=t--1/4;>0. 

(20) 

The formulas (20) are illustrated in Fig. 3 for different values of s. After the 

pressure perturbation wave reaches the boundary of the lens the rates of pressure drop at 
the well bottom become higher than the rates for an unbounded formation, and the increase 
is all the greater the smaller the ratio of the piezoelectric conductivities of the sur- 
rounding medium and the lens itself s. This result remains true in the case when, instead 
of introducing a fictitious circumlens medium, clusters with arbitrary configuration are 
studied. If such a model were applicable, the Solution (20) could be used for interpreting 
test results from separate wells, i.e., actually for solving the inverse problem. We empha- 

size that the effective radii of the lenses, introduced in this section, are a measure of 
the linear scales of the regions in which unhindered filtration occurs, and differ from the 
radii studied in the preceding sections. 

Ifi reality, the rates at which the bottom pressure drops decrease with time, as if new 
draining regions were suddently connected to the well [2]. This effect cannot in principle 
be explained by factors that prevent filtration or that limit its region. To explain it, 
it is necessary to assume, analogously to [2, 3], that new regions are added to the filtra- 
tion process when critical pressure drops or pressure gradients are reached in some zone, or 
fracture processes near the well bottom, which increase the permeability [i, 5], must be 
taken into account in an explicit form. 
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It is obvious based on the foregoing discussion that in order to construct an adequate 
model of the structure of and filtrational processes in bazhenite reservoirs and to estimate 
their petroleum reserves diverse and quite fundamental problems, many of which are nontradi- 
tional for petroleum-industrial mechanics, must be solved. Some of these problems can be 
formulated in a manner following directly from the foregoing discussions. 

NOTATION 

f, probability density distribution; G, P, Q, W, and w, probabilities and probability 
densities of different events; i, number of horizons; L and X, linear scales of a cluster; 
l, distance between the centers of neighboring lenses; m, number of lenses in a cluster; n, 
number density of the centers of lenses in a plane; p, pressure; R, radius of a lens; r, 
radial coordinate; s, area of a lens; t, time; y, parameter in (8); e, dimensionless piezo- 
electric conductivity of the fictitious circumlens medium; <, permeabils Pm, average 
radius of a cluster; ~., relative fraction of the area occupied by lenses in a single horizon; 
1 -- ~,, relative fraction of the unproductive area in all horizons; and < > denotes averag- 
ing. 
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